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Abstract

Engineering methods for modelling the generation of railway rolling noise are well established. However, these

necessarily involve some simplifying assumptions to calculate the sound powers radiated by the wheel and the track. For

the rail, this involves using an average vibration together with a radiation efficiency determined for a two-dimensional (2D)

problem. In this paper, the sound radiation from a rail is calculated using a method based on a combination of waveguide

finite elements and wavenumber boundary elements. This new method allows a number of the simplifying assumptions in

the established methods to be avoided. It takes advantage of the 2D geometry of a rail to provide an efficient numerical

approach but nevertheless takes into account the three-dimensional nature of the vibration and sound field and the infinite

extent of the rail. The approach is used to study a conventional ‘open’ rail as well as an embedded tram rail of the type used

for street running. In the former case it is shown that the conventional approach gives correct results and the complexity of

the new method is mostly not necessary. However, for the embedded rail it is found that it is important to take into

account the radiation from several wave types in the rail and embedding material. The damping effect of the embedding

material on the rail vibration is directly taken into account and, for the example shown, causes the embedded rail to radiate

less sound than the open rail above about 600Hz. The free surface of the embedding material amplifies the sound radiation

at some frequencies, while at other frequencies it moves out of phase with the rail and reduces the radiation efficiency. At

low frequencies the radiation from the embedded rail resembles a line monopole source which produces greater power than

the ‘open’ rail which forms a line dipole.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The most important source of environmental noise from railways is rolling noise, in which the track and
wheels are excited into vibration by the ‘roughness’ of the running surfaces. Both the wheels and the track
radiate significant components of noise [1,2], their relative importance depending on details of the design, the
roughness spectra and the train speeds. Nevertheless, the component of noise from the rail is often the highest,
particularly for the lower running speeds typical of light rail systems.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Many light rail or tram systems rely on street running, for which the rails are embedded in the road surface.
This introduces important differences in the response and sound radiation of a rail which need to be
investigated. Moreover, slab tracks are also being considered for heavy rail applications in order to provide
higher infrastructure availability over conventional ballasted track. A number of ballastless, or ‘slab’, track
designs have been put forward in recent years. In particular, some of these low-maintenance track concepts
include continuous support of the rail either on top of the supporting concrete slab or embedded in the slab,
e.g. Refs. [3,4].

Engineering methods for predicting rolling noise were first developed by Remington [5,6], and later
extended by Thompson [7]. A software package was produced, shared by a number of railway research
organisations and known as TWINS (‘Track-Wheel Interaction Noise Software’) [8,9]. Within TWINS, the
track vibration can be calculated by one of several methods, either based on a Timoshenko beam or using a
periodic structure model based on finite elements (FEs) [10,11]. These are used to predict the spatially
averaged vibration in each of a number of waves due to the wheel/rail contact forces. The sound radiation
from these waves is determined using radiation efficiencies obtained for a 2D geometry. Although this
approach clearly involves a number of simplifying assumptions, it has been shown that the use of 2D radiation
efficiencies is usually justified [12]. The model has been used to good effect to design a wide variety of low-
noise wheels and tracks [13].

The purpose of this paper is to introduce a new approach for determining the vibration and sound radiation
from a rail, which allows several of the simplifying assumptions in the established methods to be avoided. This
will be of particular use for slab tracks and embedded rails. It uses a combination of waveguide FEs and
wavenumber boundary elements (BEs). This takes advantage of the 2D geometry of a rail to provide an
efficient numerical approach; nevertheless it takes into account the three-dimensional (3D) nature of the
vibration and sound field and the infinite extent of the rail.

Waveguide (or spectral) FEs are used to represent structures which have a 2D geometry (here denoted
the y–z plane), while having a constant cross-section in the third (x) direction. A FE mesh is formed in
the y–z plane, with the usual assumptions of shape functions, while a wave-type solution is assumed
in the x direction. Such an approach has been used to study a variety of problems including rods [14],
composite plates [15], thin-walled beams [16], rib-stiffened plates [17], pipes [18] and car tyres [19]. This
method can be used to determine the free waves propagating (dispersion relation) or to find the forced
response as a function of frequency. In the latter case, it is necessary to solve a series of 2D problems
for different wavenumbers in the x direction. The overall response is then recovered using an inverse
Fourier transform.

A similar method has also been used previously to study the waves propagating in railway rails by
Knothe et al. [20], Gavric [21] and Bartoli et al. [22]. In each case these considered only the free waves
propagating in an unsupported rail. Ryue et al. [23] have used this approach to determine the waves
propagating in a supported rail up to 80 kHz. Models of the forced response of a railway track based on
this approach, but including the effects of periodic supports, have been developed by Gry [24,25] and Gomez
et al. [26].

In the present paper, the waveguide FE approach is used to calculate the vibration of an infinite,
continuously supported rail excited by a point force. From this response, the acoustic radiation is calculated
using the wavenumber BE approach [27,28]. In the same way as for the vibration, this involves the solution of
a series of 2D radiation problems for different wavenumbers in the x direction, the overall solution being
recovered via an inverse Fourier transform. The novelty of the current paper lies in the combined use of these
two techniques and their application to the problem of noise radiation by a rail. As both methods operate in
the wavenumber domain, it is straight-forward to couple them together, although it should be pointed out that
there is no need, in the present case, to solve a fully coupled problem, the surface vibration being used simply
as an input to the acoustic radiation problem.

In Sections 2 and 3 the theory of waveguide FE and wavenumber BE methods is reviewed. The
combined waveguide FE and wavenumber BE approach is applied to the study of a conventional ‘open’ rail in
Section 4 and an embedded tram rail in Section 5. In the former case, it is used to validate the existing
simplified approach, but for the embedded rail some additional features of the response and radiation are
explored.
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2. Waveguide FE model

This section describes the theory of the waveguide FE method and the next section summarises the acoustic
BE method transformed to the wavenumber domain along the rails. These methods are applied to a prismatic
geometry, as shown in Fig. 1, where the cross-section A in the y–z plane is constant with x. Harmonic motion
at frequency o is assumed with an implicit time dependence eiot.

A derivation of a waveguide FE model can be made in various ways. The derivation described here is based
on Hamilton’s principle, which in the frequency domain for a solid can be written as

dUðoÞ � dTðoÞ � dW ðoÞ ¼ 0 (1)

where d denotes ‘the first variation of’, U and T are the potential and kinetic energies in the system and dW is
the virtual work on the structure. Each of the terms of the left-hand side of Eq. (1) is examined separately in
Sections 2.1–2.3.
2.1. Potential energy

The first variation of the potential energy in a volume V may be written as

dUðoÞ ¼
Z

V

deHDedV (2)

where e ¼ ½�x �y �z gxy gxz gyz�
T are the strain amplitudes in the material, H denotes the complex conjugate

transpose and D is a material stiffness matrix given in Appendix A. The strains can be written in terms of the
displacements as

e ¼ B0 þ B1
q
qx

� �
u (3)

where u ¼ ½u v w�T contains the displacement amplitudes in the x, y and z directions. B0 and B1 are linear
matrix operators comprising first and zero order spatial derivatives with respect to the y and z coordinates.
These operators are also given in Appendix A.

The displacements in u and the virtual displacements in du can be approximated by

u ¼ Nðy; zÞûðxÞ and du ¼ Nðy; zÞdûðxÞ (4)

where N(y,z) are conventional 2D FE shape functions and û and dû are nodal values for the displacements and
virtual displacements. In this paper eight-noded isoparametric quadrilateral elements are used, so that the
shape functions N(y,z) are chosen to be quadratic polynomial functions.

Inserting Eqs. (3) and (4) into Eq. (2) yields

dUðoÞ ¼
Z

x

X1
i¼0

X1
j¼0

qidûH

qxi
aij

qj û

qxj
dx (5)
y

z

x

A

Fig. 1. Geometry of a typical waveguide finite element.
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where the element stiffness and higher order stiffness matrices, aij , are defined by

aij ¼

Z
A

½BiN�
TD½BjN�dA (6)

These 2D integrations over the cross-section are made numerically by Gauss quadrature, as detailed in
textbooks on FE methods, e.g., Ref. [29].
2.2. Kinetic energy

The first variation of the kinetic energy in a volume V in the frequency domain is given by

dTðoÞ ¼ rmo
2

Z
V

duHudV (7)

where rm is the material density. Using the same shape function approximation as before gives

dTðoÞ ¼ o2

Z
x

dûHmûdx (8)

where the element mass matrix m is given by

m ¼

Z
A

rmN
TNdA (9)

which is evaluated using Gauss quadrature in the same way as for the other element matrices.
2.3. Virtual work

The virtual work is considered to arise from external forces and internal losses. For simplicity the virtual
work from the losses, i.e. the damping, is approximated by amending D by adding an imaginary part such
that,

D ¼ RefDgð1þ iZÞ (10)

where Z is the damping loss factor.
The virtual work due to external forces, dWe may be written as

dW eðoÞ ¼
Z

V

duHf dV (11)

where f is a vector comprising the external forces in the x, y and z directions. Thus with the FE shape function
approximation from Eq. (4), a weighted force vector, f̂, can be defined through

dW e ¼

Z
x

dûH
Z

A

NTf dA

� �
dx ¼

Z
x

dûH f̂ dx (12)

where f̂ is the term within brackets. Usually appropriate forces may be directly applied on the nodes of the FE
model.
2.4. Complete FE model

Inserting these expressions for dU, dT and dW, i.e. Eqs. (5), (8) and (12), into Eq. (1), yields,Z
x

X1
i¼0

X1
j¼0

qidû
qxi

aij

qj û

qxj
� o2dûHmû� dûH f̂

 !
dx ¼ 0 (13)

The matrices aij and m must be evaluated for each element.
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Assembling all elements in the model so that shared nodes have the same displacements and internal forces
are eliminated means that Eq. (13) can be rewritten in a similar form, but including all degrees of freedom of
the FE model. The degrees of freedom for all FE displacements are now the entries in the system vector Û.

Integration by parts with respect to the x-coordinate follows. Dropping the integral and the virtual
displacements, dÛ is justified by the calculus of variations, see e.g. Ref. [30]. The equation of motion is
subsequently written as

K2
q2

qx2
þ K1

q
qx
þ K0 � o2M

� �
Û� F̂ ¼ 0 (14)

Performing a Fourier transform of this system from the x-coordinate to the wavenumber domain gives

½K2ð�ikÞ
2
þ K1ð�ikÞ þ K0 � o2M�Ũ ¼ F̃ (15)

where k is the wavenumber in the x-direction and � indicates the Fourier transformed properties in this
wavenumber domain, given by the Fourier transform pair

ŨðkÞ ¼
Z 1
�1

ŨðxÞeikx dx (16)

ŨðxÞ ¼
1

2p

Z 1
�1

ŨðkÞe�ikx dk (17)

and similarly for F̃.
2.5. Eigenvalue solutions

In the absence of external forces, F̃ ¼ 0, Eq. (15) represents a double eigenvalue problem:

½K2ð�ikÞ
2
þ K1ð�ikÞ þ K0 � o2M�ŨR ¼ 0 (18)

This is a linear eigenvalue problem in frequency o for a given wavenumber k, or equivalently a quadratic
eigenvalue problem in wavenumber k for a given frequency o. The latter form yields a set of complex-valued
wavenumbers kn and the corresponding eigenvectors for each frequency. The right and left eigenvectors are
denoted ŨnR and ŨnL, respectively. Numerical solution methods for quadratic eigenvalue problems are
discussed comprehensively in Ref. [31].
2.6. Solution for a point force

A point force at x ¼ 0 can be represented by a constant force vector F̃0 at all wavenumbers describing the
force distribution over the cross-section. The resulting response in Eq. (15), denoted Ũ0, can be found for a
range of wavenumbers k at each frequency using standard matrix solvers. The solution in the spatial domain
can then be recovered by a discrete inverse Fourier transform, see Eq. (17). However, since the solution is
dominated by slowly decaying waves, appearing as very narrow peaks in the wavenumber domain, the range
of wavenumbers must be quite narrowly spaced for the result to converge. An alternative method is therefore
used.

For xX0 the integral in Eq. (17) can be replaced by a contour integral around the lower half plane, where k
may now be complex. If xo0 the integral is instead made over the upper half plane. Limiting discussion to the
case xX0, the solution to the integral is given by the sum of the residues of the poles in the lower half plane,
Im(k)o0. These poles are the eigenvalues, kn, discussed in the previous section. The solution for Û0 written as
a sum of residues, see Refs. [32,33], becomes

Û0ðxÞ ¼ i
X

n

ŨnLF̃0

ŨnLD
0ðknÞŨnR

ŨnRe
�iknx for xX0 (19)



ARTICLE IN PRESS
C.-M. Nilsson et al. / Journal of Sound and Vibration 321 (2009) 813–836818
where

D0ðknÞ ¼
q
qk
½K2ð�ikÞ

2
þ K1ð�ikÞ þ K0 � o2M�k¼kn

¼ � 2knK2 � iK1 (20)

The solution for xo0 is symmetric with that for xX0.
2.7. Convolution with force distribution

The constant force vector F̃0, corresponding to a point force at x ¼ 0, gives unrealistic solutions at that
location when the size of the FE model and the number of waves increase. To overcome this, a half-cosine
force distribution along the x-direction is assumed

f̂ ðxÞ ¼

b
2
cosðbxÞ for �

p
2b

pxp
p
2b

0 otherwise

8<
: (21)

where p/b is the length of the excitation region and the distribution has a unit resultant. The Fourier
transform of f̂ ðxÞ is

f̃ ðkÞ ¼
cos

pk
2b

� �

1�
k
b

� �2
(22)

The overall force acting in Eq. (15) is now F̃0 f̃ , so that the response in the wavenumber domain can be

calculated using the product of Eq. (22) with Ũ0. The response to this force distribution can also be found

from the convolution of the solution in the spatial domain,Û0, with the force distribution f̂ ðxÞ,

ÛðxÞ ¼

Z 1
�1

Û0ðx� xÞf̂ ðxÞdx (23)

Evaluating this for x ¼ 0, and noting that f̂ ðxÞ ¼ 0 outside the forcing region and that both f̂ and Û0 are
symmetric,

Ûð0Þ ¼

Z p=2b

�p=2b

X
n

AnŨnR e�iknjxj b
2
cosðbxÞdx

¼
X

n

AnŨnR

�il� e�ipl=2

l2 � 1
(24)

where l ¼ kn/b and

An ¼
iŨnLF̃0

ŨnLD
0ðknÞŨnR

(25)

Eq. (24) is used to predict the frequency response function of the track. However, as will be seen, to predict the
acoustic radiation it is useful to obtain the solution in the wavenumber domain. This can be obtained by

taking the Fourier transform of Û0 from Eq. (19). This Fourier transform can be evaluated as

Ũ0ðkÞ ¼
X

n

AnŨnR

�1

ImðknÞ � i kþ ReðknÞð Þ

�

þ
�1

ImðknÞ þ i k� ReðknÞð Þ

�
(26)
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Then ŨðkÞ can be found by multiplying this by f̃ ðkÞ from Eq. (22). Since both f̃ ðkÞ and Ũ0ðkÞ are given as
closed form expressions, the range of wavenumbers can be chosen such that they are more finely spaced in the
vicinity of the poles.
3. Inclusion of the acoustic domain

3.1. Wave domain BE model

The acoustic properties of the fluid system may be described by the Helmholtz equation and a boundary
integral. The Helmholtz equation here takes the form, see e.g. Ref. [34],

DĈþ k2Ĉ ¼ qðrÞ (27)

where D is the 3D Laplace operator, Ĉ is the velocity potential for the fluid, q(r) describes the sources in the
fluid, k ¼ o/c is the wavenumber for freely propagating waves in the fluid and c is the velocity of sound. The
fluid particle velocity, v̂n, in direction n and the fluid acoustic pressure p̂ are given by

v̂n ¼ m
qĈ
qn

(28)

and

p̂ ¼ iomr0Ĉ (29)

where n is a unit direction vector, m is a scalar constant introduced to improve the conditioning in the resulting
numerical problem and r0 is the fluid density.

In addition to Eq. (27) a boundary equation is needed to encompass natural boundary conditions. Here the
following form is used, see e.g. Ref. [35],Z

S

dĈ
� qĈ
qn
� Ĉ

qðdĈ
�
Þ

qn

 !
dS ¼ 0 (30)

where S is the surface of the boundary domain and * indicates complex conjugate. From Eq. (27), performing
a Fourier transform from the coordinate along the x-axis to the wavenumber domain (assuming constant
geometry) for the case of no sources within the fluid gives

D2DC̃þ ðk
2
� k2ÞC̃ ¼ 0 (31)

where D2D ¼ q2=qy2 þ q2=qz2 and k is the wavenumber in the x-direction.
The Fourier transform leaves Eq. (30) unchanged except that the surface integral now becomes a line

integral over the perimeter G, Z
G

dC̃
� qC̃
qn
� C̃

qðdC̃
�
Þ

qn

 !
dG ¼ 0 (32)

Eq. (31) differs from a normal 2D Helmholtz equation in that k2 is replaced by (k2
�k2). When k24k2 and the

fluid is undamped, this system can be described with a normal 2D BE model by replacing k with the variable a
defined by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

p
(33)

On the other hand, if k2ok2, Eq. (31) will result in an acoustic nearfield solution rather than a wave solution.
Since nearfield solutions radiate no sound power, it is not necessary to include these solutions here. Hence the
sound power radiation can be described by a normal 2D BE model by replacing k with a. The software used
here is a modified version of the 2D BE model described in Ref. [35]. The result from the BE model gives
a relation between Ĉ and qĈ=qn, where n is the normal unit vector to the surface of the rail structure.
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This relation may be written as

mHW̃� mG
qW̃
qn
¼ 0 (34)

where W̃ and qW̃=qn are vectors of the respective variable at the nodes of the BE model. If so called ‘CHIEF’
points are used to overcome the non-uniqueness problem associated with internal resonances, H and G have
more rows than columns [36].

In addition to Eq. (34) more equations are needed to determine the system fully. These describe essential
boundary conditions so that local values of the pressures, normal velocities or local impedances at the
boundary are given. In addition they relate the normal velocities to displacements of the FE model.
3.2. Coupling between FE and BE models

The finite and BE models are constructed in such a way that the nodes of the respective models share the
same coordinates at the surface where they are connected and have compatible shape functions. Furthermore,
the air will have negligible influence on the vibrations of the rail so that a fully coupled model is not necessary.
The coupling condition at the shared node coordinates i is then simply,

v̂ni ¼ ioûi � n (35)

where ‘ � ’ denotes scalar vector multiplication, v̂ni is the particle velocity normal to the surface, n is the unit
vector normal to the surface and ûi is the FE displacement vector at node i. The coupling conditions for the
whole model can now be written as

mI2
qW̃
qn
� ioC2Ũ ¼ 0 (36)

where the entries in I2 are either unity or zero. The entries in C2 describe either projections of the FE
displacements onto the normal of the ‘wetted’ boundary or entries corresponding to BE degrees of freedom
where the normal velocity is required to be zero, i.e. qW̃=qn ¼ 0.
3.3. BE solution

Eq. (36) can be rearranged to give

qW̃
qn
¼

io
m
I�12 C2Ũ (37)

where the vector ŨðkÞ consists of the displacements from the FE model. Substitution into Eq. (34) allows the
velocity potential to be found at the surface nodes

W̃ ¼ H�1G
qW̃
qn

(38)

where the matrix inversion is actually a least squares solution if ‘CHIEF’ points are included. Having
determined W̃ and qW̃=qn at the surface nodes, the pressure p̃ðkÞ and particle velocity ṽnðkÞ can be found from
the Fourier transformed versions of Eqs. (28) and (29).
3.4. Radiated power

The sound power, P, radiated by the vibrating surface can be written as

P ¼
1

2
Re

Z 1
�1

Z
G

p̂�ðxÞv̂nðxÞdGdx

� �
(39)
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where G is the perimeter of the cross-section A. Using Parseval’s formula the integral over distance x can be
expressed as an integral over wavenumber, k,

P ¼
1

2
Re

Z k

�k

Z
G
p̃�ðkÞṽnðkÞdGdk

� �
(40)

where the integral has been limited to –kpkpk since larger values of k produce no radiated power.
The results can also be presented in terms of the radiation efficiency, which can be written as

s ¼
P

1
2
rc
R1
�1

R
G jvnj

2 dGdx
(41)

where the usual term Shjvj2i, the squared velocity amplitude averaged over the radiating surface and
multiplied by S, has been replaced by an integral since S is infinite.

3.5. Velocity normalisation

In comparing different track designs, differences in both the vibration level and the radiation efficiency are
of importance. The rail vibration is induced by the wheel and rail surface roughness which forms a relative
displacement excitation between wheel and rail [7]. Considering interaction in the vertical direction, the rail
vibration velocity at the contact point, vr, is given by [7]

vr ¼
iorY r

Y r þ Y w þ Y c

(42)

where r is the roughness amplitude, Yr is the mobility of the rail, Yw is the mobility of the wheel and Yc is the
mobility of the contact spring. As a result, the wheel/rail interaction force depends on the roughness and on
the point mobilities of wheel, rail and contact spring. A simplification is therefore used in order to keep the
results general and avoid including models of specific wheels.

It has been noted that, in the frequency range between about 100 and 1000Hz, the rail usually has a larger
mobility than either the wheel or the contact spring [13]. The rail vibration at the contact point is therefore
approximately equal to the roughness, vrEior, which can be considered as forming a velocity source. At
frequencies above 1 kHz the contact spring has a higher mobility and the excitation resembles a constant force.

As the rail is usually the dominant source of noise between a few hundred Hz and 1.5 kHz [2,9,13], it is more
appropriate to compare different tracks for a unit velocity excitation rather than a unit force. If P is the sound
power for a unit mean-square force, the power for a unit mean-square velocity is given by

Pv ¼
P

jY rj
2

(43)

where Yr is the mobility of the rail at the forcing point (x ¼ 0).

4. Results for an open rail section

The acoustic radiation from an ‘open’ rail section, i.e. one which is in contact with the air over its whole
cross-section, is studied in this section. The result for vertical excitation at the centre of the rail-head is
presented as well as results for a vertical excitation at the edge of the rail head. Furthermore, the effect of
applying two different simplifications is investigated. These replicate the simplifications introduced in
previously described models for rail radiation, [8,12]. Consequently, the error to which these simplifications
give rise is determined.

4.1. Model and mobility

The rail profile used here is a standard CEN 40E1 section. Although this is a lighter, more flexible section
than is commonly used in heavy rail applications, it is chosen for comparability with the embedded rail studied
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Fig. 2. Two cross-sectional models for an open rail, CEN 40E1: (a) model 1 showing central and edge excitation positions used and (b)

model 2.

Table 1

Material properties used for open rail section.

Rail Pad

Young’s modulus 210GPa 4.8MPa

Density (kg/m3) 7800 10

Poisson’s ratio 0.3 0.45

Damping loss factor 0.01 0.25

C.-M. Nilsson et al. / Journal of Sound and Vibration 321 (2009) 813–836822
in Section 5. As a result the wavenumbers for the bending waves are larger than for most other rail
applications and the effect of using a 2D radiation model rather than a 2D one becomes more significant.

The dimensions of the rail section can be seen from the FE mesh shown in Fig. 2 together with the
two different force positions. Two different meshes are shown. The one on the left has 19 eight-noded
elements and 225 degrees of freedom; the one on the right has 33 elements and 375 degrees of freedom. It was
found that these two meshes give almost identical results, with differences in the radiated sound power of
less than 0.3 dB up to 3.5 kHz. Therefore, the smaller mesh, Fig. 2(a), has been used in the remainder of
this section.

It should be noted that the pad thickness is exaggerated in Fig. 2 compared with a real pad. This is done to
clarify figures showing displacements of the rail. However, to avoid non-physical standing waves within the
pad a very low density is used. The rail and pad material properties used here are given in Table 1. The pad
material corresponds to a vertical support stiffness of 114MN/m2. Generally the rail support stiffness may
vary over a large range, up to 20 times this value [37]. Although relatively low, this value is still representative
of soft rail supports. It is used here, again, for the comparability with the embedded rail section. The BEs run
around the circumference of the rail including the bottom of the rail foot, thus representing rail radiation as if
the rail were freely suspended in air.
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The rail vibration is calculated on the basis that the rail is continuously supported, i.e. the effects of the
periodic support are neglected. This assumption is appropriate when the support stiffness is low. Even for
stiffer rail pads, where the effect of periodic supports on the track response is greater, the effect on the radiated
noise has been shown to be small [2].

Fig. 3 shows the ‘point’ mobility of the rail for the two force positions indicated in Fig. 2. This mobility is
defined as the velocity at x ¼ 0 divided by the total force, i.e. the force resultant from Eq. (21). The main peak,
around 240Hz, is due to the resonance of the rail mass on the stiffness of the rail pad. Below this frequency the
mobility is stiffness-controlled while well above this frequency the mobility is controlled by the bending
stiffness of the rail. For the forcing point away from the centre of the rail, various lateral waves are also excited
(described in the next section) and the response is higher.
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Fig. 5. Wave shapes of open rail corresponding to points indicated in Fig. 4: (a) lateral bending wave at A; (b) vertical bending wave at B;

(c) torsional wave at C; and (d) web-bending wave at E.
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4.2. Wave solutions

Before calculating the radiated power it is useful to consider the waves that can propagate in the rail. The
dispersion relations in Fig. 4, show real valued wavenumbers, i.e. non-decaying, propagating waves, calculated
for an undamped system. The dispersion relations are calculated from the eigenvalue problem stated in
Eq. (18), for a range of real-valued wavenumbers k to give the corresponding frequencies. The straight solid
line is the dispersion relation for waves in air.

The deformations of the rail are given by the eigenvectors ŨR. These deformations in different waves are
shown in Fig. 5 calculated at the wavenumber-frequency locations labelled in Fig. 4. Position ‘D’ in Fig. 4
corresponds to the longitudinal wave and is not shown. The vertical wave cuts on at just over 200Hz, which is
lower than usually found, due to the soft rail pads. However, its phase velocity still remains higher than that in
air. Even the lateral wave, which cuts on at about 60Hz, has a phase velocity that is mostly greater than that in
air.

4.3. Radiated power

The calculated normalised power, Pv as defined in Eq. (43), for a vertical force centred at the middle of
the rail is shown as the solid line in Fig. 6. The length of the excitation, b, is chosen as 9.4mm, typical of a
wheel/rail contact patch length. Below about 500Hz, the wavelength along the rail as well as the wavelength in
air is much larger than any dimension of the rail cross-section. The radiation efficiency should thus resemble
that of a line dipole, i.e. showing an increase with frequency of about 30 dB per decade. The result for the case
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Fig. 7. Radiation efficiency for the open rail, CEN 40E1: —: 3D radiation and – – –: 2D radiation.
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with a centred force is shown in Fig. 7 in the form of the radiation efficiency. As can be seen, it increases with
about 30 dB per decade between 200Hz and 1 kHz. Below the first wave cut-on, at about 200Hz, the radiation
efficiency is lower and increasing with about 40 dB per decade, as found in Ref. [12]. At frequencies above
1 kHz acoustic interference effects between the foot and the head of the rail control the radiation efficiency and
various peaks and dips occur.

Two physical simplifications of the calculations, separately and combined, have also been analysed. These
are: (i) 2D radiation and (ii) considering each wave to give independent contributions to the power. This leads
to three additional results that are also plotted in Fig. 6. These simplifications are necessary for some other rail
radiation models, e.g. those used in TWINS, [8], as presented in Appendix B. To validate this approach, the
current method has been modified to encompass these physical simplifications.

The first simplification is to calculate the radiation according to a 2D BE model, i.e. with a wavenumber,
k ¼ 0. This effect has previously been investigated in Ref. [12] where it was found that the 2D model
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Fig. 8. Normalised powers of the open rail, CEN 40E1, for two different excitations: —: central excitation and – – –: edge excitation.
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overestimates the radiation at low frequencies. On the other hand this 2D model might be expected to give
larger errors when the bending wave in the rail has a wavenumber similar to that for plane waves in air. The
rail section, CEN 40E1, has a low bending stiffness and therefore is more susceptible to this effect than stiffer
sections. Nevertheless, the results show that the effect of this simplification is negligible above 200Hz, the only
effect being due to the change in slope of the radiation efficiency curve at low frequencies, as can be seen in
Fig. 7.

The second simplification is to calculate the radiated power for each wave in the rail and then sum these
contributions. Physically this is equivalent to neglecting any change in the radiation due to the inter-
action (cross terms) between different waves in the rail. It has been found that this simplification has
some effect at low frequencies and that the radiated power decreases when this simplification is introduced.
At these low frequencies the only two waves that are of any importance are the flexural wave and the
corresponding nearfield solution. Due to the pad stiffness, the flexural wave does not cut on until about
200Hz and it is only at frequencies below this that the interaction between the waves is of any importance.
Also, as can be shown analytically, after the cut-on of the vertical wave, the cross terms in the radiation
disappear completely for undamped waves. Below the cut-on frequency the effect of this simplification is less
than 2 dB.

As seen in Fig. 6, in the present case the two simplifications have small effects on the radiation. Moreover,
they work in opposite directions and therefore tend to cancel each other to some extent. It is important to note
that, in practice, at these low frequencies, the total rolling noise from the track is often dominated by noise
from sleepers [2].

Another feature of interest that has not been fully explored in previous research is the effect of the rotational
and web-bending waves seen in Fig. 5. Again a worst case scenario is sought. For this reason the force is
moved to the edge of the rail-head as shown in Fig. 2(a). The power for a unit velocity at the excitation point is
compared for this case and the centred excitation case in Fig. 8.

As can be seen, the edge excitation apparently decreases the radiated power in much of the frequency range.
At low frequencies (below 200Hz), where the lateral wave dominates, there is an increase in radiated power,
whereas at high frequencies, where the web-bending wave has cut on there is a large reduction. However, the
latter effect is primarily due to the normalisation with the rail velocity. The velocity level at the excitation
point increases when the forcing point is moved to the edge of the rail, as seen in Fig. 3. Therefore the
normalised power, Pv, decreases correspondingly. Since the additionally excited rotational and web-bending
waves radiate little acoustic power, models not including this radiation should still be usable as long as the
mobility of the rail is correctly predicted.
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5. Results for an embedded rail section

The sound power radiated from an embedded tram rail is studied in this section. The embedded rail is
deliberately chosen to have similar dynamic properties to the open rail. This enables comparisons of radiated
power between the two track types.
5.1. Model and mobility

The rail is a standard CEN 51Ri profile used for trams and the embedding is made to fill the space around
this profile as shown in Fig. 9. As can be seen two different embedding materials are used; a softer ‘pad’ and a
stiffer ‘fill’ material around the rail. Similar configurations have been used for recently built tramways.

The vertical stiffness is virtually the same as that for the previously discussed open rail. The properties of the
embedding materials are shown in Table 2. The rail is made of steel and its material properties are the same as
those previously given in Table 1. The excitation length, b, is 9.4mm, as before.

The mesh is such that the maximum distance between adjacent nodes is about 16mm. In fact slightly larger
distances between nodes occur on the rail surface but here the rail will constrain the rubber. The shear wave
speed in the ‘fill’ material is 70.3m/s. Results from this model will therefore only be shown below 1100Hz. In
this frequency range, there are at least four nodes per wavelength; in the vertical direction, which is the most
important, there are at least six. In the ‘pad’ material the shear wave speed is lower at 37m/s. Here the
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Fig. 9. Model mesh of embedded rail section.

Table 2

Material properties used for embedding materials: ‘pad’ refers to the material below the rail foot and ‘fill’ to the material beside the rail.

Pad Fill

Young’s modulus (MPa) 4.0 20

Density (for normal mass embedding) (kg/m3) 1000 1500

Density (for reduced mass embedding) (kg/m3) 1.0 1.5

Poisson’s ratio 0.45 0.35

Damping loss factor 0.25 0.15
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Fig. 10. Point mobilities of the two rail sections: —: CEN 51Ri with normal mass embedding; – – –: CEN 51Ri with reduced mass

embedding; and – � – � : open rail CEN 40E1.
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elements are strictly too large in the width direction, but since the motion of interest is vertical in this region,
the element density is sufficient up to about 2 kHz.

The point mobility of the rail is shown in Fig. 10. The point mobility for the same rail system but with the
mass of the embedding material reduced to 0.1% of the original is also shown. This analysis was included so
that waves existing primarily in the embedding material would not cut on in the frequency range considered.
Since the two curves are similar, it is concluded that waves propagating primarily in the embedding material
have only limited effect on the mobility of the rail. The mobility for the open rail section with the force at the
centre of the railhead is also shown for comparison. The difference between this curve and the other two is
relatively small. This indicates that the dynamics for the open and the embedded rails are roughly equivalent.
Hence, the noise radiation levels from the open and embedded rail systems can be compared directly in that,
from a dynamic perspective, the tracks are almost interchangeable.

The embedded rail with the reduced-mass embedding material shows similar behaviour to the open rail,
although its resonance frequency is slightly higher and the stiffness-controlled mobility at low frequencies is
slightly lower. The mobility rises towards a peak at about 3.4 kHz, which corresponds to a higher order rail
mode with large deformation of the rail foot.

The embedded rail model with normal mass embedding material shows the same stiffness-controlled
behaviour at low frequencies. The resonance frequency is similar to that of the open rail but lower than that
for the reduced-mass embedding due to the additional mass. With the normal mass embedding the mobility
above 300Hz is lower than the other two results. Above 600Hz the extra mass decouples through a series of
waves in the embedding material and the mobility converges towards the other results.
5.2. Wave solutions

Dispersion relations and wave shapes can be calculated in the same manner as in the previous section. The
dispersion relations for the embedded rail are shown in Fig. 11. Again the solid line represents the dispersion
relation for air, i.e. k ¼ o/c.

As can be seen from this figure, there are many waves that cut on at frequencies above about 500Hz. Most
of these waves are predominantly in the embedding material. In order to examine the effect these waves have,
the behaviour is compared with that of the model with very low mass in the embedding materials, as discussed
in Section 5.1. The dispersion relations then portray the behaviour of the rail only. These are shown in Fig. 12.
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Fig. 11. Dispersion relations of the waves in the CEN 51Ri rail, embedded with the normal mass. The solid line represents acoustic waves

in air.
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The wave shapes at the points indicated in Fig. 12 are plotted in Fig. 13. As before, the actual shapes are 3D
although the wave shapes are only shown in 2D plots. Similar results are found for the corresponding waves
from the model including the full mass filler material and the material with reduced mass. In these waves the
embedding material is driven by the vibration of the rail with no dynamic effects within its own bulk. The
vertical wave cuts on at a similar frequency to the open rail, but the lateral wave cuts on at a higher frequency,
similar to that of the vertical wave, due to the influence of the stiffness of the ‘fill’ material.

The rail decay rates (see Appendix B) are shown in Fig. 14. The upper graph shows the results for the
reduced mass embedding and the lower graph that for the normal mass case. The cut-on frequencies
correspond to the frequencies where the curves in Fig. 14 drop sharply. The longitudinal wave, curve D, which
has the lowest cut-on frequency at about 150Hz, also has the lowest decay rate. The three curves, A, B and C,
dropping between about 200 and 300Hz, correspond to the two flexural waves and the torsional wave in the
rail. Curve E, which cuts on above 1 kHz, corresponds to the web bending wave.
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Fig. 13. Wave shapes of embedded rail corresponding to points indicated in Fig. 12: (a) lateral bending wave; (b) vertical bending wave;

(c) torsional wave; and (e) web-bending wave. The embedding material has negligible mass.
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Fig. 14. Decay rates of waves in the CEN 51Ri rail with: (a) the reduced mass embedding and (b) the normal mass embedding.
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The mass of the embedding material can be seen in Fig. 14(b) to reduce the cut-on frequencies and to lead to
increased decay rates above about 500Hz due to interaction between the rail and waves in the embedding
material.
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5.3. Radiated power

The radiated power from the embedded rail, normalised by the velocity of the rail at the excitation point, is
shown in Fig. 15. Compared with the results for the open rail, shown in Fig. 6, the radiated power for the
normal embedding is lower at frequencies above about 600Hz.

At frequencies below 600Hz, however, the normalised radiated power from the embedded rail is higher than
for the open rail. Since the embedded rail radiates only from its upper surface, it displays a line monopole
radiation characteristic, whereas the open rail has a line dipole radiation character, as noted previously. This
difference can be seen clearly in Fig. 16 where the radiation efficiency of the embedded rail can be seen to have
a much lower slope than the open rail, and consequently a much higher radiation efficiency at low frequencies.

From Fig. 15 it is seen that the radiated power for the proper embedding model drops below that of the low
mass embedding model for frequencies above 500Hz. Since the point mobility is almost the same (Fig. 10),
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Fig. 15. Normalised power of the embedded rail with different embedding conditions: —: reduced mass embedding and – – –: normal
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Fig. 16. Comparison of radiation efficiencies obtained from the embedded and open rails: —: CEN 51Ri with reduced mass embedding;

– – –: CEN 51Ri with normal mass embedding; and – � – � : the open rail CEN 40E1.
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there are two possible explanations for this. Clearly, the coupling between the rail and the embedding material
results in a higher decay rate, as already seen in Fig. 14. In addition, it is possible that the motion of the
surface of the embedding material may result in a modified radiation due to acoustic short-circuiting effects.
The extent to which the latter phenomena is relevant needs some further investigation.

As has been noted, with the low mass embedding material, the rail will act as a line monopole throughout
most of the frequency range considered. When the mass of the embedding is included this will change. The
vertical bending wave is shown at two different frequencies in Fig. 17. At 518Hz the embedding material
moves in phase with the rail and at a greater amplitude, whereas at 810Hz it moves out of phase with the rail
and hence the radiation from these parts to some extent will cancel each other. For the low mass embedding
material the free surface always vibrates in phase with the rail.

The normal radiation efficiency, Eq. (41), will not give a good comparison between cases with and without
the mass of the embedding material. This is because large velocity amplitudes of the embedding material will
lower the radiation efficiency regardless of the radiated power. Therefore, an ‘adjusted’ radiation efficiency is
used instead. This is defined in the same way as the normal radiation efficiency, except that the averaged
squared velocity in the denominator is taken only over the exposed part of the rail surface, that is

sa ¼
P

1
2
r0cSrhjvrj

2i
(44)

where subindex ‘a’ means ‘adjusted’ and subindex ‘r’ means rail.
The ‘normal’ radiation efficiency, defined through Eq. (41), and the ‘adjusted’ radiation efficiencies for the

high and low mass embedding models are compared in Fig. 18. The results for sa for the reduced mass
Fig. 17. Wave shapes of vertical bending wave of embedded rail: (a) normal embedding, 518Hz; (b) normal embedding, 810Hz;

(c) reduced mass embedding, 518Hz; and (d) reduced mass embedding, 810Hz.
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Fig. 18. Radiation efficiencies of the embedded rail with different embedding conditions: yy: reduced mass embedding; – � – � : normal

embedding; —: adjusted radiation efficiency for reduced mass embedding; and – – –: adjusted radiation efficiency for normal embedding.
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embedding are similar to those for s, apart from a constant difference in level caused by the change in surface
area.

It can be seen that, for the normal mass embedding model, the adjusted radiation efficiency is considerably
greater than for the reduced mass case around 500 and 1000Hz but is lower between 700 and 900Hz. The
increases at 500 (and 1000)Hz can be associated with large amplitude motion of the embedding material in
phase with the rail, Fig. 17(a), whereas the reductions correspond to situations where the embedding material
moves out of phase with the rail, Fig. 17(b). Although the adjusted radiation efficiency shows increases at
some frequencies, this is compensated by increases in decay rate, leading to the overall reduction in normalised
power seen in Fig. 15.

Overall, therefore, comparing Fig. 8 and Fig. 15 shows that embedded rails have the prospect of being
quieter than open rails in the frequency range 500–2000Hz which is important for noise from the rail.
However, this is mainly due to the increased decay rate, partly offset by increases in the (adjusted) radiation
efficiency.
6. Conclusions

A novel method to calculate the noise radiated from rails is described in this paper. The method is based on
waveguide finite elements and wavenumber boundary elements and, for considering the characteristics of
radiation from waves in rails, it is more comprehensive than other rail radiation methods found in the
literature.

Computations of acoustic radiation from open rails have been shown to be little influenced by physical
simplifications introduced in previous models. Some small discrepancies associated with these simplifications
have been found for low frequencies, but for practical use these discrepancies are likely to be negligible. Also,
for rails excited at the edge of the railhead, it has been found that higher order waves increase the point
mobility of the rail, whereas their effect on radiated power is relatively small.

The embedded track considered is found to radiate less power than an open rail above about 600Hz when
the mass of the embedding material is included in the calculations. This is mainly due to an increased decay
rate of the waves in the rail, resulting in lower vibration levels. At some frequencies the free surface of the
embedding material amplifies the sound radiation while at others some cancellation occurs when it vibrates
out of phase with the rail. These two effects indicate the possibility that embedded rail systems may emit
considerably lower noise levels than more conventional open rails if appropriately designed.
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At low frequencies, however, an embedded rail may radiate more noise than an open rail, since the radiation
characteristic of the embedded rail displays a line monopole radiation behaviour compared with the line dipole
behaviour of a conventional open rail.
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Appendix A

The stiffness tensor D in Eq. (2) is given by

D ¼
E

ð1þ nÞð1� 2nÞ

1 n n 0 0 0

n 1 n 0 0 0

n n 1 0 0 0

0 0 0 1
2
� n 0 0

0 0 0 0 1
2
� n 0

0 0 0 0 0 1
2
� n

2
6666666664

3
7777777775

(A.1)

The tensor operators B0 and B1 in Eq. (3) are given by

B0 ¼

0 0 0

0
q
qy

0

0 0
q
qz

q
qy

0 0

q
qz

0 0

0
q
qz

q
qy

2
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and B1 ¼

1 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0

2
666666664

3
777777775

(A.2)

Appendix B

The method used to estimate the sound radiation by the rail in the TWINS model [8,9] is summarised here.
The rail vibration is described by a series of damped, propagating waves. The radiation is calculated separately
for each wave, using

Pwave ¼
1

2
rcs2D

Z 1
�1

Z
G
jvwavej

2 dGdx (B.1)

where vwave(x) is the velocity amplitude in the wave, s2D is the 2D radiation efficiency. For a wave with a
complex wavenumber k ¼ kwave�ibwave, the vibration is

vwaveðxÞ ¼ vwaveð0Þe
�ikwavejxje�bwavejxj (B.2)

and the integral over x can be determined asZ 1
�1

jvwavej
2 dx ¼ jvwaveð0Þj

2

Z 1
�1

e�2bwavejxj dx ¼
jvwaveð0Þj

2

bwave
(B.3)

The sound power from each wave can then be added.
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As seen in Eq. (B.3) the imaginary parts of the wavenumbers, Im{k} ¼ bwave are very important for the rail
noise radiation. These are directly related to the ‘decay rates’, d, given in dB/m as

d ¼ 20 log10ðeÞbwave ¼ 8:686bwave (B.4)

The sound power is thus inversely proportional to the decay rates. Within the TWINS model the rail sound
radiation is determined by calculating the wave amplitudes vwave(0) due to the interaction force, the wave
decay rates, d, and the 2D radiation efficiency, s2D, and combining them according to the above formulae.
This introduces some approximations which are assessed in the present paper.
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